Because wildfire size and frequency are expected to increase in many forested areas in the United States, organizations involved in forest and wildfire management could arguably benefit from working together and sharing information to develop strategies for how to adapt to this increasing risk. Social capital theory suggests that actors in cohesive networks are positioned to build trust and mutual understanding of problems and act collectively to address these problems, and that actors engaged with diverse partners are positioned to access new information and resources that are important for innovation and complex problem solving. We investigated the patterns of interaction within a network of organizations involved in forest and wildfire management in Oregon, USA, for evidence of structural conditions that create opportunities for collective action and learning. We used descriptive statistical analysis of social network data gathered through interviews to characterize the structure of the network and exponential random graph modeling to identify key factors in the formation of network ties. We interpreted our findings through the lens of social capital theory to identify implications for the network’s capacity to engage in collective action and complex problem-solving about how to adapt to environmental change. We found that tendencies to associate with others with similar management goals, geographic emphases, and attitudes toward wildfire were strong mechanisms shaping network structure, potentially constraining interactions among organizations with diverse information and resources and limiting opportunities for learning and complex problem-solving needed for adaptation. In particular, we found that organizations with fire protection and forest restoration goals comprised distinct networks despite sharing concern about the problem of increasing wildfire risk.
Capacity to adapt to environmental change: evidence from a network of organizations concerned with increasing wildfire risk
Abstract
Publication Type
Journal Article
Date
Journal
Ecology and Society
Share