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B) Spatial problems and methods for modeling them

How do you think about ‘space’ ?

How is ‘space’ structured for problems in your field ?



In ecology, different conceptualizations point to different spatial methods 

Explicit vs. Implicit Space

One Patch vs. ‘Outside’

Small sets of homogeneous patches vs. Large networks with heterogeneity

Large, continuous regions with gradients

Methods for spatial problems in ecology and socio-environmental science



In ecology, different conceptualizations point to different spatial methods 

Alphabet Soup: 

PM: Patch Models
BBA: Bin, Bucket, and Array Models

: Metapopulation Models
: Network Models

CA:  Cellular Automata
IP:   Interacting Particle Models
PDE:  Partial Differential Equations
IDE:   Integro-Difference Equations

 The kinds of questions we can ask (and the kinds of answers & insights we can get) 
can hinge on spatial methods we use

Methods for spatial problems in ecology and socio-environmental science



Conceptual Overview of Metapopulations

What is a metapopulation really?

Think of a landscape broken up into patches

 patches obey local population dynamics

 patches are connected by dispersal

 Buzzword used to describe a variety of spatially-structured populations



Conceptual Overview of Metapopulations

What is a metapopulation really?

Moving from population dynamics

To sets of populations

Think of a landscape broken up into patches

 patches obey local population dynamics

 patches are connected by dispersal

 Buzzword used to describe a variety of spatially-structured populations



Conceptual Overview of Metapopulations

(useful because we can’t always

keep all the details)

Represent larger spatial scale dynamics

focus on patch states    (occupied vs. empty)

focus on abstraction

Time scale argument

population dynamics on local patches 

are changing faster than patch states



Quantitative Representation of Metapopulation Dynamics
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Conservation Issues:

What happens if you destroy (make uninhabitable) some patches?

Modify Equation:

  epDpcp
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New D
c

e
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 What value of D guarantees extinction?

 Do you have to destroy all the patches to cause extinction?



• Overview and Equation Structure

• Application to Spatial Spread of Invasive Species

• Application to Central Place Foraging

• Application to Conservation Planning: Average Dispersal Success

Starting with  Kot et al. 1996. Ecology  or
Hastings et al. 2005.  Ecology Letters

C) Integrodifference equations as a robust platform



Integrodifference Equations

Discrete time 
But space is continuous

Domain 
“the patch”
“the landscape”



Discrete time 
But space is continuous

Domain 

Focus on local dynamics at each position x

Population growth at all possible positions y

Individuals get redistributed and some arrive at x

Integrate growth across all positions (y) & redistributions  (from y) 
to quantify local change at x

xyi yi yi

Integrodifference Equations



Discrete time 
But space is continuous


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Domain 

xyi yi yi

Note:  y is still a position in ‘space’ just like x

Integrodifference Equations



 Dynamics depend on form of the dispersal kernel k(x,y)
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Kernel is a
probability 
density
function

Integrodifference Equations



Spatial Foraging Pattern (Kernels)

k(x) : distribution of foraging locations,    1 dxxkx



 Dynamics depend on form of the dispersal kernel k(x,y)
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What are the advantages ?

Kernel is a
probability 
density
function

Integrodifference Equations



 Dynamics depend on form of the dispersal kernel k(x,y)
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What are the advantages ?

Kernel is a
probability 
density
function

1) Discrete time structure (e.g., annual) provides a good match to many ecological (and SE) data
2) Build from well-understood population dynamics platform to add important complexities
3) Statistically estimable parameterizations
4) Analytically tractable
5) Strong mathematical / theoretical foundation
6) ‘Interesting’ to mathematicians / theoreticians

Integrodifference Equations



 Dynamics depend on form of the dispersal kernel k(x,y)


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Some questions to ask:

1) How fast will a species spread through a landscape ?

2) How does foraging away from a “home-base” influence 

resources and population dynamics of the foragers ?

3) How much of a population is lost out of a patch 

into unsuitable habitat ? 

Kernel is a
probability 
density
function

Integrodifference Equations



1) How fast will a species spread through a landscape ?

See:    Kot, M., M.A. Lewis, P. van den Driessche. 1996. Dispersal data and the spread of invading organisms. 

Ecology. 77 (7): 2027-2042

For some kernels:

Can get an asymptotically constant ‘spreading speed’ 
Can get ‘traveling wave’ phenomenon where shape of wavefront is stable

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=E2eAHPD9oFc74maHjH8&Func=Abstract&doc=9/8


For ‘heavy-tailed’ kernels: 

Can get accelerating spread
Amount of long-distance dispersal is critical to expansion

1) How fast will a species spread through a landscape ?

See:    Kot, M., M.A. Lewis, P. van den Driessche. 1996. Dispersal data and the spread of invading organisms. 

Ecology. 77 (7): 2027-2042
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S – E  systems ?

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=E2eAHPD9oFc74maHjH8&Func=Abstract&doc=9/8


Biological control as a problem in spatial ecology

Spatial Spread of Pests

Spatial Control 

How many releases of control agents ?

Where to release control agents ?

Area of control vs. Rate of spread

Areas of high damage

New outbreaks

Total area affected

Rate of spread

Time (yrs)
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Biological Control and the Mathematics of Invasive Spread 

• Theoretical perspective: 

What does it take to stop the spread of a pest ?

 Building models of spatial spread

• Empirical perspective

What can plant-herbivore “co-invasions” teach us about
biological control ?
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Predict a constant rate of invasion (eventually)
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Integro-difference equation models of spreading populations 
 Highlight importance of long distance dispersal

 And demonstrate that spread rates can actually increase over time

Time (yrs)
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Rare, long-distance
dispersers drive 

spread rates higher

Kot et al. 1996
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So we need control agents that can “catch-up” to pests

Lag time
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“Catch-up” is a major concern for fast-spreading pests
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A
re

a 
A

ff
ec

te
d

• Relative dispersal
abilities of pest
and control agent

• Timelag before
agent is released

Pest

Control Agent

early late



Issues in Spatial Biological Control:

1) Reduce spread rate of pest

• Importance of monitoring

• Reduce human-aided transport

2) Enhance spread rate of control agent

• Choice of species

• Multiple release sites

• Positioning of release sites



What happens at “catch-up” depends on

the pest, control agent, and landscape

1) Population dynamics of the pest

 Pest growth rates and “Allee effects”

2)   Feeding ecology of the control agent

 Generalist vs. specialist control agents

3) “Patchiness” of the landscape

 The importance of nascent foci



1) Pest Population Dynamics   (with a specialist predator)

a) logistic growth pest outruns

control agent

b) weak Allee effect control agent can

slow pest’s spread

c) strong Allee effect control agent can

shrink area of

impact
Owen and Lewis. 2001. Bull. Math. Biology

What Happens at Catch-Up ?
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2) Feeding  ecology 

of the control agent
CONTROL AGENT

Specialist
control agent
(spread continues)

Weakly
generalized
control agent
(spread slowed)

Highly

generalized
control agent
(pest eliminated)
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Fagan et al. 2001. Ecology Letters

Reduction in 
pest density

Before    After

What Happens at Catch-Up ?



3) “Patchiness” of the landscape

•Nascent foci facilitate spread

•Patchy, discontinuous spread
facilitates pest escape
from control agents

Patch Size

With
Control
Agents

No
Control
Agents

What Happens at Catch-Up ?



Fast spread is important, but doesn’t necessarily mean good control

 Possible relationship between dispersal ability 

and local suppression

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000

Pest Spread Rate / Control Agent Spread Rate

Pe
rc

e
n

t 
Su

p
p

re
ss

io
n

 o
f 

Pe
st

Fagan et al. 2001. Ecology Letters



2)  How does foraging away from a “home-base” influence 
resources and population dynamics of the foragers ?

 “Central place foraging”

What are some ecological examples of central place foragers ?

What is relevance of central place foraging for S-E systems ?



Central Place Foraging

Individuals reside in one area (‘the central place’) 

but forage in surrounding areas

-- nesting birds

-- pikas

-- beavers

-- fence lizards

Central place foragers often live communally

-- ants

-- seabirds

-- bats

-- cave crickets

Orians and Pearson 1979

Chase 1998



Central Place Foraging

Individuals reside in one area (‘the central place’) 

but forage in surrounding areas

-- nesting birds

-- pikas

-- beavers

-- fence lizards

Central place foragers often live communally

-- ants

-- seabirds

-- bats

-- cave crickets

Orians and Pearson 1979

Chase 1998

Villages ?

Mega-Cities ?



Population and Community Consequences 

of Spatial Subsidies 

Derived From Central Place Foraging

Published in: American Naturalist 2007

William F. Fagan

Frithjof Lutscher

Katie Schneider

University of Maryland

University of Ottawa



Spatial Subsidies

Movement of individuals or resources from one area to another

Net ‘enhancement’ in recipient community

Emphasis on subsidies of basal resources that support consumers 

(e.g., sea wrack, dead leaves, salmon carcasses) 

Spatial subsidies especially important in resource-poor habitats

(e.g., desert islands, deep sea floor, caves)

Polis et al. 1997

Naiman et al. 2002 

Relevance
to S – E
Systems ?



Central Place Foraging

Animals as conduits for allochthonous resources

-- facilitate local population growth

-- recycling of waste products

Supports local communities

-- inquilines in ant nests

-- guanophilic species at seabird colonies

-- troglobitic species in cave interiors

Human
agents ?



Central Place Foraging

Animals as conduits for allochthonous resources

-- facilitate local population growth

-- recycling of waste products

Supports local communities

-- inquilines in ant nests

-- guanophilic species at seabird colonies

-- troglobitic species in cave interiors

Kernel  k(x,y)
becomes k(x) because 
all resources go back 
to central place



Central Place Foraging Theory

Classically, a branch of optimal foraging theory

How should individuals search for food near their

central place ? 

-- selectivity in taking food as a function of distance

-- risk / reward tradeoffs

-- energetics / travel time constraints

Discrete patches vs. continuum of resources

Orians and Pearson 1979

Schoener 1979

Elliott 1988 



Modeling Approaches

Discrete-time reproductive events

Spatially distributed resource

Foraging strategies in space and time

 Population-level approach 

to central place foraging

Biological Context:  Cave ecology

Extreme dependence on 

allochthonous inputs



Cricket

Foraging

Surface

ResourcesCaveCave

Entrance

Cave Biota

Cricket Population

Cricket Carcasses

+ Cricket Feces

Cricket

Eggs

Biological

Setup

Cave Crickets:

Variable Foraging 

Foray Frequency

Large Populations





Nonspatial Consumer-Resource Model

Resource

ft+1 = G(ft)(1 − P(ct))
Total consumption

et = G(ft)P(ct)
Consumer

ct+1 = scct + βet

G : Recruitment function (compensatory Beverton-Holt)

P : probability of finding resource P(c) = 1 − exp(−c)

sc : Survival of consumers to next generation

β : conversion coefficient

Hassell 2000

Kot 2001



Spatial Model

Resource

Total consumption

Consumer

        xkcPxfGxf ttt  11
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2

L

L ttt dxxkcPxfGe

ttct ecsc 1

Consumers may forage outside the patch L.  

No resources outside, but no foraging-related mortality (yet)



Critical Patch Size

Critical patch size for consumer persistence, L*

Consumer extinction if
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Laplace < L*

Gaussian < L*
triangle < L*
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Sc = Consumer survival
 = Consumer conversion efficiency


